
Conglopoly 2

GAM 400

Fall 2012

Ryan Davey – Technical Director
Robert Srader – Tools Programmer/Producer

Table of Contents
Overview..4

Core Overview..4
Systems Overview...5

Audio..5
Game Logic..5
Graphics..5
Input..5
Memory Management...6
Messaging...6
UI System...6
Object Management..7
Physics..8
Window Management...8
Development Console...8

Graphics Implementation...9
Deferred Shading...9
Asset Management..9

Behavior Implementation...10
Customer Behavior..10

Physics Implementation...11
Movement..11
Collision Detecting and Resolution...11
Broadphase..11

Javascript..12
Wrapping Objects and Functions..12
JSON...12
Underlying Implementation..12

Coding Methods...13
Cross-platform ..13
Coding guidelines..13

Typographic Style...13
Tabs ..13
File and Function Headers..13
Header Guards..13
Basic Types...13

Debugging..14
Development Console...14
Debug output ..14
Debug Drawing ..14
AntTweakBar...14

Tools...15
AntTweakBar...15
Model Editor..15

Appendix A: Interface Flow...16
Flowchart...16
Mockups..17

Main Menu..17
Pause...18
Credits...19
Options..20
Game Exit Confirmation...21

Overview

The Engine is built from the ground up using only cross-platform APIs for Graphics, Audio, and
other systems.

Core Overview

The Engine's Core is a singleton object which provides the main entry point into the engine. It
contains 4 main points of functionality.

Core (singleton)Core (singleton)

Public abstract definition
of System

Public abstract definition
of System

Public static variables and functions
Public static variables and functions

Public System pointers
generated by #include.

Game Object manager and
Message manager pointers

Public System pointers
generated by #include.

Game Object manager and
Message manager pointers

Private profiling data
Private profiling data

• Public abstract definition of System: This is the abstract definition of a System object, which
are the main modules used to make up the game.

• Public static variables and functions: Variables and functions defined to be static can be
accessed by any object which is a System. These are comprised of variables such as
accumulated time and frame rate, and functions for allocating and de-allocating memory, as
well as a function for broadcasting messages.

• Public System pointers, game object manager, and message manager pointers: Pointers to
systems may be registered to be added in the core by adding a register call to SystemNames.h.
This file is used to generate the proper system pointers using the #include pre-processor
directive. The core also contains pointers to a message manager for managing messaging tasks
and a game object manager for generating and destroying game objects.

• Private profiling data: This data is also generated by the #include pre-processor directive and
SystemNames.h. If profiling in the core is enabled, this data is populated and can be displayed
in a custom AntTweakBar.

Systems Overview
A system is a modules which provides a specific, main block of functionality to the engine (i.e.

Graphics, Physics, Networking, etc.) This engine will use thirteen such systems. Components and
game objects (component compositions) are managed by one of these systems. For more information
on the component and game object architecture, see Object Management.

Audio
The Audio system uses the SFML v1.6 library's audio module to manage audio data and

functionality. The system will provide components that will give game objects audio functionality. It
will also provide a way for playing sounds using messages.

Game Logic
The Game Logic System houses all of the general callbacks into the Javascript scripting engine

which are not specifically related to other systems. This system also manages the initialization specifics
of the scripting engine (see Javascript) as well as other management functionality related to scripting.

Graphics
Graphics is implemented using OpenGL through SFML v1.6 and GLEW 7.0. SDL is being used

which combined, provides texture loading and processing functionality to the Engine. The graphics
system will also use SFML v1.6 for text rendering. For more information about the Graphics system,
see Graphics Implementation.

Input
Input utilizes SFML v1.6 to intercept input data from the operating system which is cross-

platform. Once intercepted, the events are pushed out to the engine as messages (see Messaging). This
system also handles input events for AntTweakbar (see Debugging.)

Memory Management
The memory manager is not specifically a system, but a set of implementations that are

accessible through the Core. It is a collection of separate object allocation modules that can be accessed
in constant time. It provides allocation of memory in blocks of different sizes. It also provides STL list,
map, set, multimap, and multiset containers that are hooked into the memory manager using a custom
allocator in a manner that is clean and generic. This system also provides extensive customization of
the sizes of the separate block allocators, the page sizes of those allocators. The system also provides
detailed debug output (print to console) of the state of the object allocators.

Messaging
The messaging system is not specifically a system, but a separate manager that is accessible

through the core. It maintains a table of the objects in the engine that are registered as a message
listener. The table is organized by a filtering system. When a message is broadcast, the system calls the
message handling functions of each necessary listener. The messages are received by the Core, which
provides the BroadcastMessage function to the Systems and Components in the engine. Messages are
memory managed, and are all allocated with the same Object Allocator within the memory manager.
The messages are passed locally via reference counting smart pointers, so the other modules in the
engine can cache and manage messages however they like. This is particularly important for the

UI System
The user interface system base code is completely custom in C++. It provides a robust set of

features for a 2d screen-space UI that will be rendered as the final pass of the deferred shading pipeline.
The UI system supports functionality for Text entry fields, text boxes, buttons (with custom textures),
and pop-out menus. The system is fully manipulable through C++ interfaces, as well as with Javascript.

Object Management

The object manager is not specifically a system, but a separate manager located in the Core. It
manages the objects in the engine using a handle/ID system. The system provides basic functionality,
through a Component Factory Table to Javascript which then manages creating and destroying objects,
as well as adding and removing components from these objects. Components are held in Component
Factories. Each component type has a component factory that contains space a component for each
game object currently in the game.

In this way, Component access and management is very efficient, since game objects simply
exist as an index into the component factories (which are parallel arrays) at the cost of having some
stale memory. The object management system is set up in a way that allows us to optimize the memory
usage if required. The component factories are singletons which can be accessed engine-wide, so that
Systems that deal with a specific type of component can easily access and modify them.

Singleton Component Factory (array)
Singleton Component Factory (array)

' ' ' '' ' ' '

' ' ' '' ' ' '

' ' ' '' ' ' '

' ' ' '' ' ' '

Game Object Manager
Game Object Manager

Other Systems
Can access component factories

individually

Other Systems
Can access component factories

individually

Component Factory Table
performs batch operations on

Component factories

Component Factory Table
performs batch operations on

Component factories
Game Object

(index)

Game Object
(index)

Physics
The physics system provides rigid body physics simulation to the Engine. This is mainly

provided through a component, BodyComponent, and a sub-classification of that component, Shape.
Collision detection and resolution is performed between three different geometric primitives. Axis
Aligned box, Oriented box, and Plane (half-space) since it is a voxel based engine. Broadphase is
implemented using an octree. See Physics Implementation.

Window Management
The window manager system is a basic system that handles the window for the game. It uses the

SDL library to create and manage the window. There are features in the system to change the size of the
window, as well as change from full screen mode to windowed mode. This system also manages
swapping the frame buffer each frame.

Development Console
The Development console manages the in-game Javascript console. There are two main functions of
this system. First, it interfaces with the Javascript engine (see Javascript) to execute lines of Javascript
typed into the console, subsequently printing errors and warning messages generated by Javascript. The
development console also has functionality to register custom callbacks in C++.

Graphics Implementation
The Graphics uses OpenGL for rendering dynamically lit voxels. Rendering is performed with

a deferred shading method and the phong lighting model with cell shaded effect and edge highlighting
post-processing effect.

Deferred Shading
The shading model used in the engine is deferred, 4 pass method with 4 render targets. The

render targets are for position, normals, diffuse, and specular. The deferred shader allows for rendering
a large number of lights efficiently. The shading pipeline supports point, spot, ambient, and directional
lighting, as well as emissives.

Asset Management
Since the graphics are voxels, most assets are generated in a programmatic fashion, however,

“models” can be saved and loaded from binary files which contain a list of voxels with position and
scale information.

Behavior Implementation
There will not be many complex behaviors. The main behavior that is needed is a state machine

to control the NPCs.

Customer Behavior
With the current game concept, the customers will be NPCs that roam a store and decide which

products they want to buy, if any. This behavior will be mostly programmed in Javascript, due to its
flexible nature (making state machines more robust.)

Physics Implementation
The physics that is supported in the engine is of mediocre complexity. It must support zero

gravity environments with floating players and objects. Because of this, robust collision resolution such
as for stacking is not required.

Movement
Movement is performed using basic Euler integration of linear movement and angular

movement. This is applied by forces, which are then integrated using mass and friction.

Collision Detecting and Resolution
Collision detection is performed between a collection of geometric primitives. These include:

• Axis Aligned Boxes

• Oriented Boxes

• Half-spaces

• Rays

Rays provide a way to perform ray-casting for shooting logic, and provides intersection points
with physics bodies.

Collision resolution is performed using the separating velocities of the objects about their
contact normals, as well as calculating penetration volumes to provide a more robust and accurate
collision resolution.

Broadphase
Voxels and bounding boxes will be placed into an octree to perform broad-phase collision

detection

Javascript
The Javascript engine uses V8 to accomplish binding objects and functions to Javascript,

serializing and de-serializing using JSON format in Javascript, and to provide an interface for creating
game logic using the previous two mentioned features.

Wrapping Objects and Functions
The interface for integrating C++ objects and functions into Javascript is very simple. Objects

and functions are wrapped using a combination of descriptive macros. For example, to wrap a class, the
class definition must contain jscript_start(ClassName). The variable and function members of the class
are wrapped in the same fashion. For Example jscript_declaration(int I) declares a member variable of
type int, labeled I.

JSON
Object archetypes are defined with Javascript Object Notation (JSON), in our Javascript engine,

specifically in the script source files. There is a system in place within the engine which maintains a
library of object archetypes which can be created and initialized at any time in Javascript. In this way,
Serialization and De-serialization is performed in conjunction with scripting functionality and is taken
care of mostly by the V8 API.

Underlying Implementation
JavaScript wrapped types are structures with a specified number of data members of type

v8::Value. CPP types can be converted as well from JavaScript via the overloaded
JavaScript::CastToJavaScript and JavaScript::CastFromJavaScript functions. Any type which has been
wrapped in the default manner should automatically be convertible to and from JavaScript.

Additionally, any type which defines a member function "v8::Local<v8::Object>
GetJScriptRepresentation() const", will also be convertible to JavaScript, although doing so is ill-
advised.

The default behavior for user defined types is to wrap a single pointer to the type, with the
presumption that the object will be alive for the duration for which it is accessible in JavaScript.

Coding Methods
The members of the team have agreed on a loose set of coding methods to be used in the

engine. The major specification relates to cross platform compatibility, in that code written must
support both Microsoft's C++ compiler as well as g++. Warning and error messages are maximized on
both compilers. Code is written in Microsoft's Visual Studio 2008.

Cross-platform
The engine must support cross platform compatibility. Code written must be in compliance with

both Microsoft's C++ Compiler as well as G++. This enforces C++ standard code and is a great way to
keep implementations across many team members standard and organized.

Coding guidelines
There is a comprehensive set of coding guidelines that are suggested on the team's website.

Here is a summary of those guidelines.

Typographic Style
Typographic style pertains to the style of code that a programmer uses. For example, brace

placement, parentheses placement, variable and function naming conventions, etc. There are no strict
enforcements on the typographic style of coding. You may use whichever style you are comfortable
with when writing your own blocks of code, but restricted by the following guidelines:

1. Your style must be readable, organized and consistent.
2. When altering or adding modifications to another teammate's code, you must adhere to their

typographic style.

Tabs
The one pedantic rule that relates to typographic style. You MUST use TABS instead of spaces

when coding in the project.

File and Function Headers
Every file in the project must have a file header. Developers must make sure to check these

headers occasionally to make sure they are up to date. If you are the major author of a file, but your
name is name listed as the author, then feel free to take authorship of the file and list the other person as
a contributor. (It is probably a good idea to let this person know about it as well).

There are no specifications for a function header. If you feel that it is necessary, add comments
at the top of your function to explain what it does. This is not required, but suggested.

Header Guards
Use the “#pragma once” header guard method at the beginning of every header file.

Basic Types
Developers must use the typedefs defined in Precompiled.h. This is for cross-platform purposes.

Debugging
There are a collection of debug features built into the engine. The developers use these tools

extensively as well as the tools provided by Visual Studio 2008 to debug errors in the code base.

Development Console
The in-game Development Console provides a way to manipulate game objects in real time

while the game is running as well as run any type of logic that needs to be debug. It is also useful for
performing stress tests and running tasks that need to be debugged at certain times, such as connecting
to another player, for example.

Debug output
There is a standard console window which provides debug output. This output can accessed

within the engine by using any standard method of printing, as well as a macro, ConsoleMessage,
which prints to the debug output as well as the Development Console. ConsoleMessage is useful
because it can be easily compiled out of the engine. The Memory Manager system (see Memory
Management) and the Object Manager (see Object Management) use this debug output extensively.

Debug Drawing
The graphics engine provides an interface for debug drawing wire frame Cubes, Planes, Lines

(Rays), and Points. The Physics engine uses this interface extensively to debug draw physics objects
and their intersections. Debug drawing can be enabled and disabled in real time.

AntTweakBar
AntTweakBar, is used to display real-time debug information. The information that it displays is

completely configurable.

Tools
The developers are using the following tools to perform certain tasks.

AntTweakBar
The AntTweakBar library is being used to display real-time debug information, as well as an

interface for the Level Editor.

Model Editor
A voxel model editor that is activated in-engine. Uses AntTweakBar or custom UI system to

provide tools for making voxel models. User will be able to put together voxels, change color and size
of the voxels, and save/load other voxel models.

Appendix A: Interface Flow

Flowchart

Digipen Logo
Digipen Logo

Team Logo
Team Logo

Intro
Intro

Main Menu
Main Menu

Options
Options

Credits
Credits

Pause
Pause

Gameplay
Gameplay

Game Exit Confirmation
Game Exit Confirmation

Mockups

Main Menu

Start Game

Tutorial

Options

Credits

Exit Game

Main MenuMain Menu

Pause

Resume Game

Options

Credits

Return to Title Screen

PausePause

Credits

Technical Director: Ryan Davey
Tools Programmer/Producer: Robert Srader

Special Thanks:
People's names

CreditsCredits

Options

Resolution
< current resolution >

Toggle Fullscreen/Windowed

Sound

OptionsOptions

Music volume (10%)

Sound FX volume (10%)

Graphics Detail

Game Exit Confirmation

Are you sure you want to exit?
This will close the game window.

Yes No

Game Exit ConfirmationGame Exit Confirmation

	Overview
	Core Overview
	Systems Overview
	Audio
	Game Logic
	Graphics
	Input
	Memory Management
	Messaging
	UI System
	Object Management
	Physics
	Window Management
	Development Console

	Graphics Implementation
	Deferred Shading
	Asset Management

	Behavior Implementation
	Customer Behavior

	Physics Implementation
	Movement
	Collision Detecting and Resolution
	Broadphase

	Javascript
	Wrapping Objects and Functions
	JSON
	Underlying Implementation

	Coding Methods
	Cross-platform
	Coding guidelines
	Typographic Style
	Tabs	
	File and Function Headers
	Header Guards
	Basic Types

	Debugging
	Development Console
	Debug output
	Debug Drawing
	AntTweakBar

	Tools
	AntTweakBar
	Model Editor

	Appendix A: Interface Flow
	Flowchart
	Mockups
	Main Menu
	Pause
	Credits
	Options
	Game Exit Confirmation

